Pertumbuhan dan Uji Kualitatif Kandungan Metabolit Sekunder Kalus Gatang (Spilanthes acmella Murr.) dengan Penambahan PEG untuk Menginduksi Cekaman Kekeringan

- Zulhilmi, - Suwirmen, Netty W Surya

Abstract

The study about the growth and qualitative test of secondary metabolite content of the callus culture of Spilanthes acmella Murr. with addition of PEG to induce drought stress had been done used completely randomized design with six treatments and six replications. The treatments were the addition of PEG in various consentration : 1%, 2%, 3%, 4%, 5% and control (without addition of PEG). The result showed that the addition of PEG to medium could decrease fresh weight of callus. The fresh weight of callus was decrease significantly by addition 5% PEG. On the qualitative test of secondary metabolite, alkaloid content was increase by addition of 2% - 5% PEG (++), terpenoid content was increase by addition 3% - 4% PEG (++) and fenolik was found on 4% PEG (+).

Keywords: callus culture, secondary metabolite, PEG, drought stress, Spilanthes acmella

Full Text:

PDF HTML

References

Adfa, M. 2007. Isolasi Senyawa Flavonoid Aktif Berkhasiat Sitotoksik dari Daun Kemuning (Murraya Panicullata L. Jack.). Jurnal Gradien 3 (2) : 262-266.

Bidwell, R. C. S. 1979. Plant Physiology. Macmillan Publishing co., Inc. New York.

Biswas, B., Chowdurry, A. Bhattacharya and B. Mandal. 2002. In Vitro Screening for increasing Drought Tolerance in Rice. In Vitro Cell. Dev. Biol-Plant. 35 : 525-530.

Culvenor, C. C. J and J. S. Fitzgerald. 1963. A Field Method for Alkaloid Screening of Plants. J. Pharm. Sci. 52: 303-306.

Di Cosmo, F., and M. Misawa. 1995. Plant Cell and Tissue Culture : Alternatives for Metabolites Production. Biotechnology Advances 3 : 425-453.

Dragiiska, R., D. Djilianov, P. Denchev and A. Atanassov. 1996. In Vitro Selection for Osmotic Tolerance in Alfalfa (Medicago Sativa L.) Bulg. J. Plant physiol. 22 (3-4) : 30-39.

Ehsanpour, A. A., and R. Razavizadeh. 2005. Effect of UV-C on Drought Tolerance of Alfalfa (Medicago sativa) Callus. American Journal of Biochemistry and Biotechnology I (2) : 107-110.

El-Rahman, A., M. F. Al-Ansary, A. A. Rizkalla and A. M. Badr-Elden. 2007. Micropropagation and Biochemical Genetic Markers Detection for Drought and Salt Tolerance of Pear Roostock. Australian Journal of Basic and Applies Sciences 1(4): 625-636.

Evenari, M. 1960. Plant Physiology and Zone Research. Arid zone Res. 18: 175-195.

Harvey, A. 2000. Strategies for Discovering Drugs from Perviously Unexpioned Natural Product. Drugs discovery Today 5 (7) : 294-300.

Ingram, J. and D. Bartels. 1996. The Molecular Basis of Dehydration Tolerance in Plants. Ann. Rev. Physiol. Mol. Biol. 47 : 377-403.

Kandpal, R. P., C. S. Vaidyanathan, M. Udaya, K. S. K. Sastry and N. A. Rao. 1981. Alterations in The Activities of The Enzymes of Proline Metabolism in Ragi (Eleusine Coracana) Leaves During Water Stress. J. Biosci., 3 (4) : 361-370.

Kramer, P. J. 1983. Water Relation of Plant. Academic Press, Inc. Ltd. London.

Kristina, N. N. 2007. Peluang Peningkatan Kadar Kurkumin pada tanaman Kunyit dan Temulawak. Balai Penelitian Obat dan Aromatik.

Lestari, E. G., dan D. Sukmadjaja. 2006. Uji Toleransi Kekeringan pada Galur Somaklonal IR64 dan Towuti Hasil Seleksi In Vitro. Penelitian Pertanian Tanaman Pangan 25(2) : 85-90.

Mansfield, T. A., and C. J. Atkinson. 1990. Stomatal behavior in water stressed plants. In : Alscher and Cumming (Eds.). Stress Respons in Plant: Adaptation and Acclimation Mechanisms. Wiley-Liss. Inc. New York. P : 241-246.

Mantell, J. M., E. Magiri, A. O. Rasha and J. Machuka. 2008. In vitro selection and characterization of drought tolerance somaclones of tropical maize (Zea mays L.). In : Mantell, S. H., H. Smith (Eds.).Plant Biotechnology. Cambridge University Press. New York. P : 75-108.

Matheka, J. M., E. Magiri, A. O. Rasha and J. Machuka. 2008. In Vitro Selection and Characterization of Drought Tolerance Somaclones of Tropical Maize (Zea mays L.). Journal of Biotechnology 7(4) : 641-650.

Michael, B. E., and M. R. Kaufmann. 1973. The Osmotic Potential of Polyethylene Clycol 6000. Plant Physiol. 51 : 914-916.

Prachayasittikul, S., S. Suphapong, and A. Worachartcheewan. 2009. Bioactive Metabolites from Spilanthes acmella Murr. Molecules 14 : 850-867.

Pugnaire, F. I., L. Serrano and J. Pardos. 1999. Constrains by water stress on plant growth. In : M. Pessarakli (Ed.). Handbook of Plant and Crop Stress 2nd. Marcell Dekker. New York. P : 271-283.

Rahayu, E. S., E. Guhardja, S. Ilyas dan Sudarsono. 2005. Polietilen Glikol (PEG) dalam Media In Vitro Menyebabkan Kondisi Cekaman yang Menghambat Tunas Kacang Tanah (Arachis hypogea L.). Berk. Penel. Hayati II : 39-48.

Salisbury, F. B., dan C. W. Ross. 1992. Fisiologi Tumbuhan. (Terj. Lukman, D. R., dan Sumaryono). Penerbit ITB. Bandung.

Sutjahjo, S., A. Kadir dan I. Mariska. 2007. Efektivitas Polietilen Glikol sebagai Bahan Penyeleksi Kalus Nilam yang Diiradiasi Sinar Gamma untuk Toleransi Terhadap Cekaman Kekeringan. Jurnal Ilmu-Ilmu Pertanian Indonesia 9(1) : 48-57.

Wongsawatkul, O., and S. Prachayasittikul. 2008. Vasorelaxant and Antioksidan Activities of Spilanthes acmella Murr. Int. J. Mol. Sci. 9 : 2724-2744.

Yulinda, E. 2010. Kultur In Vitro Tanaman Centella asiatica dengan Beberapa Konsentrasi Polietilen Glikol (PEG) 6000 dan Potensinya untuk Produksi Metabolit Sekunder Triterpenoid. [Skripsi]. Universitas Andalas. Padang.

Refbacks

  • There are currently no refbacks.